Identifying leatherback turtle foraging behaviour from satellite telemetry using a switching state-space model

نویسندگان

  • Ian D. Jonsen
  • Ransom A. Myers
  • Michael C. James
چکیده

Identifying the foraging habitat of marine predators is vital to understanding the ecology of these species and for their management and conservation. Foraging habitat for many marine predators is dynamic, and this poses a serious challenge for understanding how oceanographic features may shape the ecology of these animals. To help resolve this issue, we present a switching state-space model (SSSM) for discerning different movement behaviours hidden within error-prone satellite telemetry data. Along with modelling the movement dynamics, the SSSM estimates the probability that an animal is in a particular discrete behavioural mode, such as transiting or foraging. Using Argos satellite telemetry for leatherback sea turtles, we show that the SSSM readily identifies distinct classes of movement behaviour from the noisy data. Moreover, patterns in simultaneously collected diving data, to which the model is blind, match well with behavioural mode estimates. By combining behavioural mode estimates from the model with the diving data, we show that while transiting, leatherbacks make longer, deeper dives; and while foraging, they encounter cooler waters that range from 13 to 22°C. These differences are consistent among the turtles studied and within the same turtle in different years. This modelling approach can enhance standard kernel density estimators for identifying habitat use by incorporating behavioural information into the estimation procedure. Ultimately, we can build predictive models of habitat use by incorporating environmental data and diving behaviour directly into the SSSM framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles.

1. Biological and statistical complexity are features common to most ecological data that hinder our ability to extract meaningful patterns using conventional tools. Recent work on implementing modern statistical methods for analysis of such ecological data has focused primarily on population dynamics but other types of data, such as animal movement pathways obtained from satellite telemetry, c...

متن کامل

Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle.

Leatherback sea turtles, Dermochelys coriacea, undertake broad oceanic movements. While satellite telemetry has been used to investigate the post-nesting behaviour of female turtles tagged on tropical nesting beaches, long-term behavioural patterns of turtles of different sexes and sizes have not been described. Here we investigate behaviour for 25 subadult and adult male and female turtles sat...

متن کامل

Coastal leatherback turtles reveal conservation hotspot

Previous studies have shown that the world's largest reptile - the leatherback turtle Dermochelys coriacea - conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we d...

متن کامل

Assignment tests, telemetry and tag-recapture data converge to identify natal origins of leatherback turtles foraging in Atlantic Canadian waters.

Investigating migratory connectivity between breeding and foraging areas is critical to effective management and conservation of highly mobile marine taxa, particularly threatened, endangered, or economically important species that cross through regional, national and international boundaries. The leatherback turtle (Dermochelys coriacea, Vandelli 1761) is one such transboundary species that sp...

متن کامل

Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and δ15N Analysis of Amino Acids

Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007